
DISTRIBUTED FRAMEWORK FOR FREQUENCY BASED THREAD POOL

Sahrish Imtiaz, Faisal Bahadur, Arif Iqbal Umar

Department of Information Technology

 Hazara University
Mansehra, Pakistan

Abstract— Concurrency is necessary in server side
programming, and two basic ways to built concurrent
programs i.e. single-threaded approach and Multithreading
approach. Multithreading improves processor consumption in
several ways, such as shared memory multiple processors
(SMP), multiple threads can be executed on different
processors to easily distribute the processing load. Thread
pool is a multithreading architecture that is used in web and
application servers to maximize performance and the dynamic
optimization of thread pool is a challenge to retain server’s
performance as the request rate on the server fluctuates.
Frequency based dynamic thread pooling strategies face this
challenge on vertical scaling where requests are processed by a
single server. These strategies cannot be used in horizontal
scaling for distributed applications hence unable to use the
power of distributed servers. This paper presents a dynamic
thread pool tuning strategy that is developed on a distributed
framework to utilize the power of distributed servers named
DFBOS that offers the advantages of substantial scalability
and liveliness. The simulation results reviled the fact that
DFBOS outperforms other frequency based thread pooling
strategies in terms of throughput and response time.

Keywords—Concurrency,ConcurrencyMechanisms,
Multithreading Approaches,Restricted Frequency Based
Optimization Strategy, Distributed Frequency Based
Optimization Strategy

I. INTRODUCTION
Concurrency is the process of processing multiple jobs at

same time in computer system. Typically two aspects are

essential when dealing with concurrency. One is to

control the external events occurring in random order

and the second is to make sure that these events are

making response in minimum needed time interval.

If every synchronous action changed severally, in a very

actually similar approach, this is able to be

comparatively simple: we've got an inclination to may

simply produce distinct programs to run out all

activities. The experiments of planning synchronous

systems rise mostly as results of the contacts that occur

among coincident actions. Once period of time activities

move, some variety of coordination is required.

Concurrency control brings different benefits to the

computer system i.e. exploiting multiple processors,

improved resource consumption, more responsive

programs and simple program design.

Multitasking

When two or more tasks are processed parallel at certain

period of time. Multitasking is managed by Operating

System. Computer System executes segments of multiple

tasks in parallel, while the tasks share common

resources such as CPU and RAM. By using the context

switching mechanism, CPU execute a certain process for

a specific interval of time, and after executing next

process is loaded for processing.

Multithreading

When a CPU executes multiple threads at same time is

called multithreading, which is supported by Operating

System. By using Instruction Level Parallelism and

Thread Level Parallelism, aim of multithreading is to

increase the use of a single core. After 1990s Instruction

Level Parallelism has become more popular in

Multithreading execution. Threads are an approach of

achieving a better quality of concurrency inside a

process. Every thread of same process shares the same

memory resources and other processing resources.

Typically all threads are assigned a method to execute.

Multithreading Approaches

When Single CPU process Multiple Process or Threads is

called Multithreading. Beside these statements,

International Journal of Scientific & Engineering Research Volume 8, Issue 6, June-2017
ISSN 2229-5518

2085

IJSER © 2017
http://www.ijser.org

IJSER

synchronous blocking I/O is the archetypal way for

running I/O. It is an archetypal style that is all around

bolstered by abundant programming dialects. It likewise

prompt a straight forward programming model, since all

assignments vital for solicitation taking care of can be

coded successively. Besides, it gives a basic mental

deliberation by detaching solicitations and concealing

simultaneousness. Genuine simultaneousness is

accomplished by utilizing numerous Threads/forms in

the meantime.

Thread per Request Approach

This approach manages every request from a client in a

distinct thread of control. This model is convenient for

servers that handle extensive duration requests such as

database requests, from several clients. It is fewer

helpful for short time requests due to the transparency

of generating a new thread for every request. It can also

consume a huge number of OS resources if numerous

clients make requests at the same time.

Thread Pool Approach

In Thread pool framework, M quantities of Threads are

made to do N quantities of errands. When all is said in

done M≠N rather, the measure of Threads is tuned to the

figuring assets accessible to handle undertakings in

parallel (processors, centers, memory) while the quantity

of errands relies on upon the issue and may not be

known forthright.

Purposes behind utilizing a Thread pool, as opposed to

the undeniable option of producing one Thread for

every undertaking, are to keep the time and memory

overhead inborn in Thread creation, and to abstain from

coming up short on assets, for example, open records or

system associations (of which working frameworks

designate a predetermined number to running projects).

A typical method for disseminating the assignments to

Threads (booking the errands for execution) is by

method for a synchronized line known as an

undertaking line. The Threads in the pool take

undertakings off the line, perform them, and after that

arrival to the line for their next errand.

II. RELATED WORK
This section gives the brief detail of various researches

taken out on thread pool system. Till date a variety of

thread pool models are anticipated by the researchers.

“Object Interconnections by Douglas C. Schmidt &

Steve Vinoski”

This paper describes thread pool concurrency version

and provide an explanation for the way to use it to

develop multithreaded servers for a dispersed stock

citation application. This paper describes how item-

orientated strategies, C++, CORBA, and upper level

abstractions like the Singleton pattern assist to make

simpler programming and enhance extensibility. This

paper explores another concurrency version: thread per

consultation. This version is supported with the aid of

some of CORBA implementations such as MT-Orbix and

ORBeline. Having a preference of concurrency fashions

can help developers meet the overall performance,

functionality, and preservation necessities of their

applications. The key to accomplishment, of direction,

lies in very well knowledge the tradeoffs between

distinctive fashions.

 “Design and Implementation of Multi-Threaded

Object Request Broker by Winston Lo & Yue-Shan

Chang”

This paper explains CORBA 2.0 to design and placed

into effect a multi-threaded entity request agent based

totally on the Windows NT and critical TCP delivery

protocol. This paper divides the ORB in 3 layers. These

layers includes run time, records representation &

communication layer. Run time layer is a set of energetic

International Journal of Scientific & Engineering Research Volume 8, Issue 6, June-2017
ISSN 2229-5518

2086

IJSER © 2017
http://www.ijser.org

IJSER

petition interface exercises with which customer

programs call a remote item. Inside the statistics

illustration layer CORBA 2.0 is used, wherein

commonplace statistics illustration is used & in the

communication layer TCP/IP protocol is used, that's the

standard of net. ORB uses the runtime library & server

spirit to combine programs and item enforcement. The

user interface is comparable to Orbix, as it compares

performance with Orbix. It also implements an IDL

compiler in ORB surroundings to interpret IDL

definitions into C++ mapping. Then, it uses programs to

calculate ORB overall performance via employing

Schmitt’s approach to evaluate with IONA’s Orbix.

From the results, it is clearly proven that the statistics

marshalling, unmarshalling and greatest reminiscence

allocation in statistics illustration layer in gadget is extra

green than Orbix. Its miles as it adopts buffer pool

reminiscence control to manage allocated memory.

 “An Overview of the Real-time CORBA Specification

by Douglas C. Schmidt & Fred Kuhns”

Growing instructions of real time structures require end

to give up support for diverse nice-of-provider (QoS)

elements, including jitter, latency, bandwidth and

dependability. Applications contain control and

manipulate, mechanized manner manage,

videoconferencing, massive-scale dispensed interactive

simulation, and test beam facts acquisition. Those

structures require support for Threadent QoS

requirements. To fulfill this challenge, developers are

turning to allotted object computing middleware,

including the common item Request broker architecture,

an object control organization (OMG) industry standard.

In complicated actual-time structures, doc middleware is

living between packages and the fundamental working

systems, protocol stacks and hardware. CORBA enables

lower the cycle time and struggle required to expand

excellent systems with the aid of composing programs

the use of reusable software program thing offerings in

place of constructing them completely from scratch. Real

Time CORBA specification includes functions to control

CPU, network and reminiscence sources. The authors

describe the key actual-Time CORBA features that they

experience are the most pertinent to researchers and

developers of disbursed real-time and implanted

systems.

 “Performance Study and Dynamic Optimization

Design for Thread Pool Systems by Dongping Xu”

This paper provides a reason behind the set of efficiency

metrics for quantitatively analysis of thread pool basic

efficiency. For experiment, a thread pool device become

constructed which presents a famous framework for

thread pool studies. On the bases of this imitation

environment, the general performance effect brought via

the thread pool to amazing multithreaded applications.

Furthermore, the correlations amongst inner specialties

and the throughput turned into moreover studied the

experimental consequences point out that the

commonplace undertaking idle time has robust courting

with the thread pool extraction. This paper projected

and appraisals the idea of the usage of a heuristic

method to resolve the quality thread pool period

primarily based at the project common idle time. The

simulation effects prove that dynamic optimization for

thread pool period could be very powerful in

eliminating the overhead and improving the overall

efficiency.

 “Dynamic Thread Count Adaptation for Multiple

Services in SMP Environments by Takeshi

Ogasawara”

This paper proposes a dynamic technique, thread count

adaptation, which adjusts the thread counts that are

owed to services for adapting to CPU requirement

International Journal of Scientific & Engineering Research Volume 8, Issue 6, June-2017
ISSN 2229-5518

2087

IJSER © 2017
http://www.ijser.org

IJSER

variations in SMP environments. The target is to raise

the utmost throughput accessible on a system that has

numerous dynamic content services while meeting

various service time criteria for these services in

dynamic workloads. Confront is to noticeably progress

response times for dynamic content on a busy well-

tuned thread-pool-based system without prioritizing

any specific services. The experiments reveal that a

prototype using our approach on J2EE middleware

quickly (around every 20 ms) adjusted the thread counts

for the services and that it improved the average 90th-

percentile response times by up to 27% (and 22% on

average) for the SPECj AppServer2004 benchmark.

 “A Dynamic Adjustment Mechanism with Heuristic

for Thread Pool in Middleware by Ning-jiang Chen &

Pan Lin”

The primary position of this paper is the dynamic

alteration approach of thread pool pushed by means of

heuristic actions (which incorporates response

coefficient and jamming thread pointer) has been

supplied. Those heuristic actions can replicate run time

reputation of thread pool correctly; therefore the

dimension of thread pool may be tuned enthusiastically

and pretty. The tests affirm the success effect of the

changes of heuristic elements. Moreover, the

experiments show that the offered approach can make

contributions to increase the gadget typical performance.

 “Analysis of Optimal Thread Pool Size by Yibei Ling

& Tracy Mullen”

This paper provides thread pool version on numerical

announcement and provided a numerical shape for

formulating the most useful pool duration for

inexperienced thread supervision. Thread introduction

time and the thread background switching time is used

for measuring gold fashionable volume of the pool. But

those parameters are hard to calculate at the intensity of

kernel. Yet no internet server can calculate those

parameters.

 “Configuring Resource Managers Using Model

Fuzzing: A Case Study of the .NET Thread Pool by

Joseph L. Hellerstein”

This paper recommend version fuzzing, a way that

mixes size and model to make available a specific and

measureable assessment of RM configurations. Model

fuzzing starts by constructing a structure version that

relates useful aid allocations to performance of the

controlled device. For the net thread pool, that is

articulated as a uni-modal concurrency throughput

curve, a characteristic that is easy to approximate the

usage of simple equations. Then, studies are carried out

in which the RM execution engage with the system

version to bet the performance of managed machine for

RM configurations. Thru “fuzzing” the parameter of the

gadget model, we explore the general performance of

RM configurations for masses versions of the managed

gadget and its workloads. This paper enlarge a

technique for configuring RMs that makes use of version

fuzzing and considers many evaluation criteria (e.g.,

excessive throughput, low quantity of threads).

 “Prediction-Based Dynamic Thread Pool Management

ofAgent Platform for Ubiquitous Computing by Ji

Hoon Kim, Seungwok & Han, Hyun Ko”

The applications for ubiquitous device want to

efficaciously using the belongings allocated within the

environment and provide smart offerings to the users.

As a manner to satisfy such necessity, the programs

want to be evolved the use of intelligent marketers

offering optimized offerings to all person. Moreover, the

platform itself wishes that allows you to help platform

degree service optimization. This paper proposed a

prediction primarily based dynamic thread pool

handling scheme using Gaussian distribution for

International Journal of Scientific & Engineering Research Volume 8, Issue 6, June-2017
ISSN 2229-5518

2088

IJSER © 2017
http://www.ijser.org

IJSER

maximizing the usage of resources. The experiments

shows that the proposed scheme outperforms the

winning consultant thread pool fashions. It additionally

added a modern-day shape of agent platform that gives

interactive environment among smart dealers, at the side

of the operation series flow of registration, elimination,

and transmission of entrepreneurs with the proposed

agent platform middle. It lets in every the institution

management and man or woman control of the

entrepreneurs for efficiency. Because the destiny

paintings, we're capable of similarly optimize the

dynamic thread pool management scheme by using

properly adjusting the parameters used in the

prediction.

 “Prediction-based Dynamic Thread Pool Scheme for

Efficient Resource Usage by DongHyun Kang &

Saeyoung Han”

This paper has progressed a few vulnerable factors of

the static worker thread pool model and the requirement

based totally thread version, in order that it could

enthusiastically exchange the dimensions of thread

swimming pools consistent with the purchaser’s

requests. It is able to maintain a low reaction time to the

requests, and is advanced to use the system sources

proficiently. As an give up result, it predicts the wide

variety of required threads earlier the usage of the

performed exponential average scheme, and creates

those threads earlier; in order that it improves the

eliminate of the reaction time even as clients request,

and it deletes the pointless threads for other packages to

use the gadget property even as there are much less

users’ requests. The ones performances are examined in

the preceding phase using the cautioned scheme. Usual,

our counseled version answers the proper architecture of

device. While there are too many users’ requests, it

extensively speaking attempts to lower the response

time no matter the truth that it could use more resources.

While there are handiest few requests, it returns all

unused assets so they can be applied in extraordinary

processes. In this paper, we test our version with a case

with many requests and a case with few requests, and

observe the end result of instances with watermark

thread pool model. However, extra researches are

desired to reveal that the prediction-based totally

dynamic thread pool version is more efficient than the

watermark model by way of manner of measuring the

performance of the combination of times above for an

extended time frame, or the overall performance of a

well-known server surroundings which offers numerous

services concurrently.

 “A Novel Predictive and Self–Adaptive Dynamic

Thread Pool Management by Kang-Lyul Lee, & Hee

Yong Youn”

This paper added a unique technique which

enthusiastically adapts the thread pool to the operation

situation to maximize the device overall performance. To

benefit the cause, the TEMA idea was proposed to as it

should be expecting the quantity of threads. In addition,

a brand new prediction primarily based thread pool

employer changed into developed to dynamically alter

the quantity of threads within the pool, thinking about

the idle timeout duration and the conditions of thread

destruction. It permits powerful thread advent &

destruction consistent with the modern day repute. A

test shows that the proposed scheme significantly

outperforms the present schemes for numerous request

fees in phrases of response time and CPU overhead. For

destiny paintings, we plan to increase a brand new

prediction scheme enhancing the prediction

accurateness. Furthermore, scheme thinking about the

priority of the watcher and employee thread is probably

investigated to efficiently arbitrate the operations of

International Journal of Scientific & Engineering Research Volume 8, Issue 6, June-2017
ISSN 2229-5518

2089

IJSER © 2017
http://www.ijser.org

IJSER

thread creation & destruction in conjunction with the

call for processing.

 “Design of Hierarchical Thread Pool Executor for

DSM by Sitharamaiah Ramisetti & Rajeev Wankar”

This paper explains Hierarchical Thread Pool Executor

by means of the non-blocking line has been considered

and replicated at the cluster surroundings the usage of

Min Heap tree. One of the essential obstacles of using

the blockading queue is that the thread in multithreaded

surroundings is blocked till it's far done inflicting

performance deprivation. The anticipated design of

Hierarchical Thread Pool Executor the use of the non-

blocking queue overcomes this hassle and gives higher

performance.

 “Mobile Agent Based Elastic Executor Service by

Anirban Bhattacharya”

This paper explains the idea to give reference structure

to enforce a allotted executor provider the usage of

JADE platform for cellular sellers. However it'd want

extra designated tests with different mobile agent

platform as properly. Tests also are necessary to be

finished the way it reacts to failover in distinctive

conditions. In destiny, mobile dealers in an executor

service may be made wiser with changeable

functionality. The nodes may be made to shuffle the

request within the nodes relying on various capability of

the node based. by way of assuming that each one

containers/JVM are of same ability which can be

exploited extra and solution may be advanced with

different functionality of packing containers and

extraordinary set of rules for capacity calculation.

 “FREQUENCY BASED OPTIMIZATION STRATEGY

FOR THREAD POOL SYSTEM by F. BAHADUR&

M.NAEEM”

The primary contribution of this paper is the

management of FBOS, a dynamic tuning approach it's

primarily based completely on set of measureable

procedures that are without complexity enormous and

experimentally provable. FBOS approach is furnished

for the ones server aspect packages that use thread pool

structure. FBOS approach is applied in JAVA. This

method dynamically resizes the thread pool at the idea

of request frequency and it we ought to the thread pool

device jogging gracefully. The quantitative measures of

FBOS technique are turnaround time of requests, idle

time of requests and the system in the course of. FBOS

plays dynamic optimization of the thread pool when it

famous that the turnaround time of jobs involve geared

up time and it then react by growing the pool length in

keeping with modern request frequency and then

recycles the threads for arriving requests efficaciously.

 “OPTIMIZING FREQUENCY-BASED THREAD

POOL SYSTEM BY NON-BLOCKING QUEUES AND

AUTOMATED TIMERS by Ghazala Ashraf, Faisal

Bahadur, Mohammad Abrar Khan & Arif Iqbal Umar”

This paper introduces the automated timers to manage

non-blocking thread pool system namely, non-blocking

FBOS. Frequency-Based thread pool system (FBOS) has

been redesigned by replacing Lock based data structures

and objects with non-blocking ones. Non-blocking FBOS

with automated timers has been designed by using spin

primitives on non-blocking queues and atomic objects.

We have observed the effects of non-blocking algorithms

over the performance of existing scheme FBOS, by using

non-blocking algorithms that use Compare and Swap

(CAS) instructions in Java5. We have implemented

frequency based automated timers instead of constant

timers.

The results show that by using non-blocking queues /

algorithms and automated timers in non-blocking FBOS

with automated timers strategy, performance can be

improved and better response time can be provided than

International Journal of Scientific & Engineering Research Volume 8, Issue 6, June-2017
ISSN 2229-5518

2090

IJSER © 2017
http://www.ijser.org

IJSER

the one provided by FBOS strategy on high request

arrival rate.

 “Prediction and Frequency Based Dynamic Thread

Pool SystemA Hybrid Model by Sumat Nazeer, Faisal

Bahadur , Mohammad Abrar Khan, Abdul Hakeem,

Miraj Gul, Arif Iqbal Umar”

This paper introduces a strategy which dynamically

alters the size of a thread pool depending upon the rate

of requests arrival, which results in the improvement of

outcome and performance of the system. Hybrid

(combination of prediction and frequency based) model

is developed to gain the desired output. This model

predicts the number of threads based on incoming

frequencies.

This model also enthusiastically tunes the pool size by

giving deliberation to the inactive time period. Threads

are automatically destroyed due to increase in inactive

time.

This methodology keeps away from synchronization

overhead by considering the approaching solicitation

frequencies rather than string pool estimate. By escaping

synchronization overhead, its forecasts are significantly

more precise than those of the TEMA technique. The

subsequent exact forecast shuns the lacking of threads

and prompts to execution change. The objective of this

research was to enhance the reaction time of client’s

requests, which has been effectively accomplished as

reenactment results.

 “Implementing Saturation Point Detection

Mechanism in Frequency Based Thread Pool by

Shahid Hussain”

This paper explains the implementation of Saturation

point Detection Mechanism in FBOS. RFBOS is define

and done with the aid of utilizing Java. This paper

exhibited approach for servers that are running on multi

threading. This plan is supposed for vertical scaling i.e.

such as making ready asset a solitary server. It isn't for

horizontal scaling i.e. for corporations. It is define to be

applied for the ones jobs which might be I/O sure or

combination of I/O sure jobs & CPU sure jobs. This

scheme cannot be applied for jobs which might be

simply CPU bound jobs. Through implementing

Saturation factor Detection Mechanism in Frequency

based Thread gives brief reaction time to the customers

through diminishing keep up time of each customer.

III. MOTIVATION

The motivation of our work is that Web servers, file

servers and application servers implemented by FBOS

can result in low performance when client’s requests are

long running tasks i.e. service time of request is high,

because FBOS is designed to optimize the pool when the

requests are of low I/O intensity and those objects on

the server that takes long time to service will slow down

the system’s performance as FBOS only considers

frequency of requests and not the service time of

requests. Whenever a request of high I/O intensity i-e

service time of the request is greater than one second

than FBOS fails in that condition. This research is taken

out to remove scheduling overhead from FBOS and to

design and develop distributed framework for RFBOS

 IV. PROBLEM SPECIFICATION

FBOS (frequency based optimization strategy) is single

server based strategy, in which the context switching is

performed. Second problem in FBOS is Synchronization

overheads due to which system performance become

slow.

V. PROPOSED SOLUTION

To implement the DFBOS we need a Master Server

connected with multiple Slave Servers. These Servers are

connected with each other by the help of Sockets as

shown in Figure 5.1. Master server is used to process the

Client’s requests by using the Thread Pool Strategy. In

Master Serer thread pool size is restricted by the help of

saturation point detection mechanism. When the pool

International Journal of Scientific & Engineering Research Volume 8, Issue 6, June-2017
ISSN 2229-5518

2091

IJSER © 2017
http://www.ijser.org

IJSER

size reaches the saturation point, further requests of

clients migrate to the 1st Slave Server and when the 1st

Slave Server reaches its saturation point then further

requests migrate to the 2nd Slave Server and so on.

Figure 5.1 Network Design

SDM (Saturation Detection Mechanism) is used to track

saturation Point. Saturation point is detected by

measuring the performance metrics on Master Server

and Client Servers. The point at which maximum

performance is obtained is marked as Saturation Point.

RFM (Request Forwarding Mechanism) is used to

migrate client’s requests from Master Server to the slave

server. RFM uses Round Robin Scheduling to manage

requests.

FOBS is a dynamic tuning approach to Optimize Pool

length. FBOS strategy makes use of a framework that is

developed in JAVA. This approach can dynamically

resize the thread pool on the idea of request frequency.

Global Table is used to save the IP address of the

connected slave servers and also update the Saturation

Point Status respectively.

Figure 5.2FBOS Server

DFBOS system consists of one master FBOS server and

more than 1 slave FBOS servers. First we will start

Master server of DFBOS System as depicted in figure 5.2.

When it is started it will start listening into two ports,

the port2 is used to listen requests from slave servers

.When we start any slave from network computer we

will give the IP of Master server and slave will try to

connect to the Master server on Port2, if it is a new slave

then the Global Table is updated on Master Server to

store the IP of slave as well as its saturation point (SP) is

recorded as label “No”, i.e. Saturation point is not

reached. When the saturation point of slave is reached it

will send a signal to the Master server which will search

its IP and update SP status to “YES” as well as the

maximum capacity of slave. Port1 is used for the

users/clients of DFBOS system that are sending

requests. Master FBOS server can process the requests at

specific frequency until its saturation point arrives, i.e.

For example if request rate is 1000 requests per second

and FBOS performance is not degraded then 1000 is not

the saturation point and if request rate becomes 1200

request per second and throughput is degraded it means

that 1200 is saturation point and server capacity is only

1000 requests per second. All other requests would be

forwarded to Request Forwarding mechanism (RFM).

Saturation Detection Mechanism will continuously check

server throughput after every second and when it will

detect low throughput than desired then it will mark the

saturation point of FBOS server. FBOS will forward all

those requests to RFM which are beyond its capacity.

RFM component of FBOS server runs in round robin

fashion i.e. it will pick a slave from Global table and

forward one request to it and then it will pick next slave

from table and forward it one request and so on. It will

repeat this loop until all the requests beyond server

capacity have sent to the salves. In this way it will

International Journal of Scientific & Engineering Research Volume 8, Issue 6, June-2017
ISSN 2229-5518

2092

IJSER © 2017
http://www.ijser.org

IJSER

maintain the load balancing on the network. For

example if request rate is 1200 requests per second and

server capacity is 1000 then 200 requests would be send

to RFM and if there are only two slaves connected to the

server then each one will process 100 requests in every

second. In this way all the slaves will be given equal

load to process until a slave complains for its own

saturation point. For example if request rate is 2000 r/s

and there are 2 salves then each slave is responsible to

process 500 requests every second, now if request rate

suddenly increased from 2000 to 3000r/s then each salve

will receive 1000 requests every second and if SDM of

slave1 detects its SP at this rate then salve 1 will send

signal to server about its SP and its capacity is also

marked in the Global Table. In this case RFM will not

send the requests to slave 1 more than its capacity

Figure 5.3 FBOS Slave Server

Architecture of slave server of FBOS is given in Figure

5.3. When this server starts it will connect to the master

server and it will accept requests from the master server

its SDM will repeatedly checks its maximum capacity(

after every second) on which it can process request with

particular rate on high performance. When SDM detects

it’s SP it will signal Master server that its capacity is

finalized and Master will not send requests more than its

capacity.

VI. ANALYSIS AND RESULTS

In this section a comparison between DFBOS, RFBOS &

FBOS is performed. Comparison was performed by

keeping four aspects i.e Load Generation, Throughput,

Response Time & Pool Size of the above motioned

techniques.

Load Generation

On the below graph, Number of Requests are plotted at

Y-Axis and Time in Seconds is plotted at X-Axis. We

have Poisson appropriation having λ =25, 50, 75,100,125.

We have the Workload of 100 milliseconds.

Figure 6.1 Load Generation

Throughput

On the below graph, Time is plotted at X Axis &

Throughput is plotted at Y Axis. At the beginning,

Throughput of all strategies is identical because of Non

Restriction or Non Saturation Point detection. After

attaining the SP i.e. throughput of 75 jobs / second. The

throughput of RFBOS was constrained and the

throughput of FBOS became reduced. While the

throughput in DFBOS technique increases.

Figure 6.2 Throughput Graph

International Journal of Scientific & Engineering Research Volume 8, Issue 6, June-2017
ISSN 2229-5518

2093

IJSER © 2017
http://www.ijser.org

IJSER

Average Throughput generated in FBOS is 45 requests

per second. In RFBOS average Throughput were 60

requests per second while in DFBOS the average

Throughput was 75 requests per second.

Response Time

In the below graph, Response / Jobs are plotted at X

Axis whereas the Response time is plotted at Y Axis. By

increasing the numbers of Jobs, the response time of

FBOS and RFBOS is suffered while in DFBOS the

response time is improved.

Figure 6.3 Response Time Graph

Average Response Time of FBOS technique is

125,whereas the average Response Time of RFBOS is 116

and average Response Time of DFBOS is 107. Hence the

average response time of DFBOS is improved.

Pool Size

In the below graph, Time is plotted at X Axis and Pool

size is plotted at Y Axis. Pool Size is measured in

Number of Threads whereas Time is measured in

Seconds. Pool Size is Restricted in RFBOS, due to which

the Pool Size remain stable after reaching SP. In FBOS

strategy Pool Size is not Restricted. Whereas in DFBOS

pool size is also restricted, but in DFBOS tasks are

migrated to next Server after reaching SP.

Figure 6.4 Pool Size Graph

Results Comparison

The below table illustrate the comparison between

FBOS, DFBOS and RFBOS.

Response Time Throughout

 DFBOS gives us

14.4% more

Response Time

than FBOS.

 DFBOS gives us

7.7% more

Response Time

than RFBOS.

 DFBOS give 55%

more throughput

w.r.t FBOS.

 DFBOS give 16%

more throughput

w.r.t FBOS.

VII. CONCLUSION & FUTURE WORK

The most important task of this research is to get better

result of thread pool by developing distributed

environment. The prior methods of Thread pool are

single server and due to limited space, pool size was

bounded. Due to restricted size the overhead threads

goes into waiting state. DFBOS is developed to

overcome these problems by using multiple servers i.e.

One Master Server connected with Numbers of Client

Servers. Master server detects the saturation point of

each server and migrates the jobs to next server. To

elaborate the results and assumption a JAVA framework

called Thread Pool Tester is developed which is used as

a simulation tool. Thread Pool Tester is used to test the

performance. Thread pool tester also evaluates different

throughput, frequencies, pool size and response time

with FBOS and RFBOS and gives the better results in all

aspects.

Future Work

In DFBOS method there is no procedure to share out the

workload along with different servers. To uniformly

International Journal of Scientific & Engineering Research Volume 8, Issue 6, June-2017
ISSN 2229-5518

2094

IJSER © 2017
http://www.ijser.org

IJSER

share out the request among the special nodes a Load

Balancing Framework can be developed.

REFERENCES
 [1] D. Schmidt and S. Vinoski, “Object

Interconnections: Comparing Alternative

Programming Techniques for Multithreaded

Servers - the Thread-Pool Concurrency

Model,”C++ Report, SIGS, Vol 8, No 4, April

1996

 [2] Chang. S, J. Wang, M. Yuan and D. Liang..

“Design and Implementation of Multi-Threaded

Object Request Broker”. International conference

on Parallel and Distributed Systems.

(Washington, DC., USA) pp. 740-747. 1998

 [3] D. Schmidt and F. Kuhns, “An overview of

the real-time CORBA specification,” IEEE

Computer, vol. 33, no. 6, pp. 56-63, June 2000

 [4] Xu, D. and B. Bode. Performance Study and

Dynamic Optimization Design for Thread Pool

System. Proc. of the Int. Conf. on Computing

Communications and Control Technologies.

(Austin, Texas, USA) pp.167-174. 2004

 [5]Takeshi Ogasawara, "Dynamic Thread Count

Adaptation for Multiple Services in SMP

Environments," IEEE International Conference

on Web Services (ICWS '08), pp. 585-592,

September 23-26, 2008

 [6] Ning. C, P. Lin. A Dynamic Adjustment

Mechanism with Heuristic for Thread Pool in

Middleware. 3rd Int. Joint Conf. on

Computational Science and Optimization. IEEE

Computer Society. (Washington, DC., USA) pp.

324-336. 2010

 [7] Y. Ling, T. Mullen, and X. Lin. Analysis of

optimal thread pool size. ACMSIGOPS

Operating Systems Review, 34(2):42–55, 2000

 [8] J.L. Hellerstein, “Configuring resource

managers using model fuzzing: A case study of

the .NET thread pool,” IFIP/IEEE International

Symposium on Integrated Network

Management (IM '09), pp. 1-8, 2009

 [9] J.H. Kim, S.W. Han, H. Ko and H.Y. Youn,

“Prediction- based Dynamic Thread Pool

Management of Agent Platform for Ubiquitous

Computing,” Proceedings of UIC 2007, pp.

1098-1107, 2007

 [10] Kang. D, S. Han, S. Yoo and S. Park.

Prediction based Dynamic Thread Pool Scheme

for Efficient Resource Usage. Proc. of the IEEE

8th Int. Conf. on Computer and Information

Technology Workshop, IEEE Computer

Society. (Washington, DC., USA) pp. 159-164.

2008

 [11]Kang-Lyul, pham.h,Hee-seong. "A novel

predictive and self-Adaptive Dynamic Thread

Pool management." Ninth IEEE International

Symposium on Parallel and Distributed

Processing with

pplications,Busan,Korea,May.26-28, 2011

 [12] Ramisetti.S, Wanker.R ."Design of

hierarchical Thread Pool Executor". Second

International conference on modeling and

Simulation, kualalampur, Malaysia, 284-288,

2011

 [13] Anirban Bhattacharya. “Mobile Agent

Based Elastic Executor Service”. Ninth

International Joint Conference on Computer

Science and Software Engineering (JCSSE), 2012

International Journal of Scientific & Engineering Research Volume 8, Issue 6, June-2017
ISSN 2229-5518

2095

IJSER © 2017
http://www.ijser.org

IJSER

 [14] F. Bahadur, M.Naeem, M. Javed, A.

Wahab. “FBOS: Frequency Based Optimization

Strategy for Thread Pool System”. The Nucleus

51, No. 1, 93-107, 2014

 [15] Shahid “RFBOS: Restricted Frequency

Based Optimization Strategy for Thread Pool”

MS(CS) Thesis 2016

 [16] F. Bahadur, “Thread Pool Tester

Simulation Tool” Availble:

https://github.com/faisalsher/ThreadPoolTes

ter, Aug. 12, 2015 [Accessed: Aug. 12, 2015]

 [17] Ghazala Muhammad Ashraf, Faisal

Bahadur, Mohammad Abrar Khan, Arif Iqbal

Umar “Optimizing Frequency-Based Thread

Pool System By Non-Blocking Queues And

Automated Timers” (IJCSIS), Vol. 14, No. 7,

July 2016

 [18] Sumat Nazeer, Faisal Bahadur,

Mohammad Abrar Khan, Abdul Hakeem, Miraj

Gul, Arif Iqbal Umar “Prediction and

Frequency Based Dynamic Thread Pool System

A Hybrid Model” (IJCSIS),

Vol. 14, No. 5, May 2016

International Journal of Scientific & Engineering Research Volume 8, Issue 6, June-2017
ISSN 2229-5518

2096

IJSER © 2017
http://www.ijser.org

IJSER

